

 ARL-TR-7315 ● JUNE 2015

 US Army Research Laboratory

Analysis and Implementation of Particle-to-
Particle (P2P) Graphics Processor Unit (GPU)
Kernel for Black-Box Adaptive Fast Multipole
Method

by Richard H Haney, Eric Darve, Mohammad P Ansari, Rohit
Pataki, AmirHossein AminFar, and Dale Shires

Approved for public release; distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the

Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official

endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-7315 ● JUNE 2015

 US Army Research Laboratory

Analysis and Implementation of Particle-to-
Particle (P2P) Graphics Processor Unit (GPU)
Kernel for Black-Box Adaptive Fast Multipole
Method

by Richard H Haney and Dale Shires
Computational and Information Sciences Directorate, ARL

Eric Darve, Mohammad P Ansari, Rohit Pataki, and
AmirHossein AminFar
Mechanical Engineering Department, Stanford University

Approved for public release; distribution unlimited.

ii

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the

data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the

burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid

OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

June 2015

2. REPORT TYPE

Final

3. DATES COVERED (From - To)

January 2015–May 2015

4. TITLE AND SUBTITLE

Analysis and Implementation of Particle-to-Particle (P2P) Graphics Processor

Unit (GPU) Kernel for Black-Box Adaptive Fast Multipole Method

5a. CONTRACT NUMBER

W911NF-12-2-0019

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Richard H Haney, Eric Darve, Mohammad P Ansari, Rohit Pataki, AmirHossein

AminFar, and Dale Shires

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory

ATTN: RDRL-CIH-S

Aberdeen Proving Ground, MD 21005

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-7315

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The Black-Box Adaptive Fast Multipole Method (bbAFMM) has been generating some interest within the high-performance

computing community as a tractable solution to the well-known n-body problem. The bbAFMM approximates the n-body

solution using a series of independent functions or kernels that are attractive to high-performance code development using one

or more graphics processor unit (GPU) devices. This work follows the analysis and implementation of the direct interaction

called particle-to-particle kernel for a shared-memory single GPU device using the Compute Unified Device Architecture,

revealing a performance boost of greater than 500 times over the corresponding serial central processing unit implementation.

The objective of this work is to both document the implementation of the GPU kernel and provide a better understanding of

the observed performance through an algorithmic analysis that focuses on arithmetic intensity, GPU memory bandwidth, GPU

peak performance, and the defined Peripheral Component Interconnect Express bandwidth.

15. SUBJECT TERMS

fast multipole method, high-performance computing, CUDA, PCIe, GPU, P2P

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
OF ABSTRACT

UU

18. NUMBER
OF PAGES

20

19a. NAME OF RESPONSIBLE PERSON

Richard H Haney

a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

410-278-7866
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures iv

List of Tables iv

1. Introduction 1

2. Background 2

3. Algorithmic Analysis of P2P 2

3.1 Computing Environment Employed 3

3.2 Calculating FLOP and Byte Counts 3

3.3 Kernel Arithmetic Intensity 5

3.4 Hardware-Derived Metrics 5

4. Implementing P2P as a GPU Kernel 6

4.1 Kernel Indirection and Data Clusters 6

4.2 Observed Performance and Predictive Analysis 8

5. Conclusions and Future Work 9

6. References 10

List of Symbols, Abbreviations, and Acronyms 12

Distribution List 13

iv

List of Figures

Fig. 1 P2P algorithm...3

Fig. 2 K kernel algorithm ...4

Fig. 3 P2P data and indirection pointers ..7

Fig. 4 P2P GPU kernel algorithm...8

Fig. 5 GPU-defined P2P kernel performance ...9

List of Tables

Table Estimated P2P kernel performance ..6

1

1. Introduction

The n-body problem, a well-established, potentially intractable algorithm with

computational complexity of  2n , is a critical component to many solutions in

fields as varied as biology, chemistry, physics, and engineering.1,2 Efforts to

manage the computational cost of this algorithm have resulted in the development

of approximations such as the Barnes-Hut Fast Multipole Method (FMM) and the

Adaptive Fast Multipole Method (AFMM).3–5 The Black-Box Adaptive Fast

Multipole Method (bbAFMM) used in this work is a variant of the AFMM and

follows a similar structure but without the explicit definition of multipole

expansions, relying instead on the use of a Chebyshev interpolation to evaluate a

continuous distribution of density at the surface of each box that encloses a set of

particles.6 The result is an algorithm that executes with a lower computational

complexity of O(n) for n particles for any non-oscillatory function without

sacrificing the efficacy of the final solution.7

The bbAFMM algorithm defines a set of 8 independent functions or kernels that

are attractive to exploitation within the high-performance computing (HPC)

community using the graphics processor unit (GPU).8 This work examines the

particle-to-particle (P2P) kernel using an algorithmic analysis that focuses not just

on arithmetic intensity, but GPU memory bandwidth, GPU peak performance, and

peripheral component interconnect express (PCIe) bandwidth to understand the

potential performance benefit of using the GPU device for its definition. The

resulting algorithmic analysis is then compared with the observed results of the

GPU-defined P2P kernel we developed using the Compute Unified Device

Architecture (CUDA).9 A brief outline of the rest of this work follows.

The next section will discuss the background of the bbAFMM algorithm including

a brief description of the 8 defined kernels emphasizing the P2P kernel that is the

focus of this work. Section 3 will provide the algorithmic analysis of the P2P kernel

and will include subsections on approximating floating-point operations, counting

bytes as well as GPU peak, memory, and PCIe bandwidth, as they are critical in the

final analysis. This section will also describe the computing environment employed

in this work. Section 4 describes the actual implementation of the P2P kernel using

the GPU and includes the resulting observed performance. This section will

examine the observed results in relation to the previous section on algorithmic

analysis. The last section presents conclusions and future work.

2

2. Background

The bbAFMM is an approximation of the n-body problem and structurally similar

to AFMM defining 8 separate kernels that operate within a tree structure.10 Each

level 1l in the tree is refined recursively from level l by subdividing cubic data

structures containing source particles under consideration commonly referred to as

boxes.10,5 It is during the execution of these recursive phases that the 8 kernels are

called, and can be defined as, either leaf or nonleaf modes—i.e., execute at either

the leaf or nonleaf levels of the defined tree structure.

The multipole-to-multipole (M2M), multipole-to-local (M2L), particle-to-local

(P2L), and local-to-local (L2L) are defined as nonleaf, while the particle-to-

multipole (P2M), P2P, multipole-to-particle (M2P), and local-to-particle (L2P) are

defined as leaf-mode operations. These kernels function together to approximate

the global solution bbAFMM through far- and near-field computations, the latter of

which is the result of the execution of the P2P kernel.

The P2P kernel calculates the contributions of particles belonging to a leaf box and

its neighboring leaf boxes, and is analogous to the all-pairs interaction given by the

direct n-body solution.1,2 Letting the total number of neighboring clusters at a given

level for any leaf box T be N(T), the computation of near-field values using the P2P

kernel is given mathematically by Eq. 1, such that x,y are defined as a well-

separated pair,11 i.e., not sharing a boundary, in target box T and source box

S , respectively, for kernel K(x,y) for all xi  T. 7,12

    
 
 
 


TNS Sy

jjii

near

j

yxKxf  . (1)

It follows from Eq. 1 that the GPU should be leveraged to execute the P2P kernel

given the potential high floating-point count and the proclivity of the device to

efficiently consume these operations.2 However, there are other factors, which are

discussed in the following section.

3. Algorithmic Analysis of P2P

This section will discuss the actual algorithmic analysis employed by this work and

detail the methodology used to determine both approximate floating-point

operation counts and associated bytes moved by the P2P kernel. This section also

presents the actual computing environment in which this work was completed.

3

3.1 Computing Environment Employed

The computing environment used for this work is a 64-node heterogeneous cluster

consisting of 48 IBM dx360M4 nodes, each with one Intel Phi 5110P and 16

dx360M4 nodes each with one NVIDIA Kepler K20M/K40M GPU. Each node

contained dual Intel Xeon E5-2670 (Sandy Bridge) central processing units

(CPUs), 64 GB of memory, and a Mellanox FDR-10 Infiniband host channel

adaptor.

However, this work is focused on the behavior of a single kernel and as such does

not employ multiple processors. This work makes use of a single processing core

and a single NVIDIA Kepler K40 GK110 architecture with 2 PCIe Gen 3.0 slots

standard, optional 2 double-widths PCIe for GPUs or coprocessors. The defined

metrics for the hardware are 1) PCIe bandwidth (2 × 16 slot), 7.877 GFloat/s;

Kepler K40 peak, 4,290 × 1 billion floating-point operations (GFLOPs), and 288

GB/s Kepler K40 memory bandwidth.13,14

3.2 Calculating FLOP and Byte Counts

The calculation of FLOPs and bytes moved by the P2P kernel follows from the

algorithm employed by the CPU implementation shown in Fig. 1 for given leaf box

T with “U-List” the current list of neighbors and K the defined kernel. The K

kernel defined by the CPU follows the algorithm given by Fig. 2.

Fig. 1 P2P algorithm

Let S be the average number of particles per leaf node and U

be size of U-List for the cluster that the
th
i particle

resides in.

1. FOR 0i TO S

2. FOR 0j TO 1U

3.   jU_ListMj  // pointer to cluster of neighbors

4. FOR 02 i TO  SIZEMj  // total number in cluster

5.            22 idataM,idataTK.widataMifif jj 

6. END FOR

7. END FOR

8. FOR 12 ii TO S // local particles

9.            22 idataT,idataTK.widataTifif 

10.            idataT,idataTK.widataTifif  2

11. END FOR

12. END FOR

4

Fig. 2 K kernel algorithm

Given that specific FLOP counts are intrinsically bound to hardware design, we

take an asymptotic approach and ignore constants, examining instead how the

algorithm scales for given inputs.15 The analysis completed by this work will focus

on the execution of the P2P kernel for a single leaf node N , but these derivations

can be extended without loss of generality to all leaves in the tree structure

employed by bbAFMM. Analysis of the P2P algorithm in Fig. 1 reveals several

nested loops that depend both on the number of neighboring particle clusters and

all locally defined particles. The operations that occur within these loops compute

the values for the neighboring particles Mf and local particles Lf shown in Fig. 1

lines 4–6 and 8–11, respectively.

The mathematical representation of the P2P algorithm is shown as Eq. 2 with size

jM

being the total number of particles defined in cluster ListU _ at index j .

   




  


























S

i

U

j

S

ii

L

M

i

M ff

size
j

0

1

0 1202

. (2)

Let the number of neighboring particles from the cluster at index j shown in Fig.

line 4 be averaged as Eq. 3, which assumes a worst-case scenario.

 S
U

MMM size

Uj

size

j

size

j




 

1

110 
. (3)

Following asymptotic analysis,15 the operations Mf and Lf are defined as

constants, and by applying Eq. 3, Eq. 2 becomes Eq. 4.

      
   










































S

i

S

i

S

i

S

ii

U

j

S

ii

U

j

USSUSSS
0 0

222

0 12

1

012

1

0

. (4)

The determination of the total number of bytes moved by the P2P kernel follows

the algorithm presented by Fig. 1 but only counts any potential movement across

the PCIe bus, the established bottleneck for many GPU-based solutions.16,17

Input: Well-separated points YX,

1. FUNCTION K (parameters: X, Y)

2. SET d TO      222
Y.zX.zY.yX.yY.xX.x 

3. Return  
d

1.0

4. END FUNCTION

5

Limiting the byte count to global data movements removes the K kernel from the

equation and leaves only the particles defined by the given leaf box T and any

neighbors defined by Eq. 3 for each member in the U-List. The resulting asymptotic

behavior of bytes moved for the P2P kernel is shown as Eq. 5.

    USSUS  . (5)

3.3 Kernel Arithmetic Intensity

The arithmetic intensity is the ratio of FLOPs (Eq. 4) to bytes moved (Eq. 5) and is

directly related to potential GPU performance such that the higher the ratio, the

better the performance is likely to be using the GPU. Clearly the arithmetic intensity

given by the P2P kernel scales as a product of the average number of particles per

leaf node S and the average number of particles per neighboring clusters. This

computed arithmetic intensity is examined in relation to the defined GPU memory

bandwidth, GPU peak performance, and PCIe bandwidth in the next subsection.

3.4 Hardware-Derived Metrics

There are 2 main issues when running a kernel on the GPU: proper utilization of

the GPU and the cost of data transfer over the PCIe. Given a kernel with high

arithmetic intensity such as P2P, proper utilization of the GPU is accomplished with

a bigger kernel and setting the number of threads per block at optimal levels.

However, estimating the cost of data transfer over the PCIe bus is more involved.

The estimated speed at which the PCIe can supply the data necessary for the P2P

kernel to operate at optimal levels must be determined. The performance of the

hardware employed in this work, detailed in Section 3.1, is used to derive the

metrics for this subsection. The estimated PCIe bandwidth is given by Eq. 6 and

the estimated GPU computational speed is given by Eq. 7, with Kbyte and Kflop the

number of bytes and FLOPs for the P2P kernel, and PCIebw and GPUflop the PCIe

bandwidth and GPU FLOPs peak.

bw

byte

PCIe
PCIe

K
T

910
 . (6)

flop

flop

flop
GPU

K
T

910
 . (7)

Computing the values for Eqs. 6 and 7 is accomplished by factoring out U for

Eqs. 4 and 5 to determine the approximate FLOPs and bytes moved for the P2P

6

kernel. The approximated kernel FLOPs and bytes moved are then applied to

Eqs. 6 and 7 for the final estimated performance results. The estimated performance

results are computed for increasing numbers of particles and shown in the Table,

where S is defined as the number of particles.

Table Estimated P2P kernel performance

Number of

Particles
PCIeT flopT

flopPCIe TT 

4,913 6.24e-07 5.63e-06 5.001e-06

9,261 1.18e-06 2.00e-05 1.88e-05

13,824 1.75e-06 4.45e-05 4.28e-05

24,389 3.10e-06 1.39e-04 1.36e-04

97,336 1.24e-05 2.21e-03 2.20e-03

The Table shows that for increasing numbers of particles, the time it takes the PCIe

to transfer data to the kernel is less than it takes the device to process the results.

This indicates an operation that is compute-bound rather than memory-bound and

likely a good candidate for definition using the GPU.

4. Implementing P2P as a GPU Kernel

A critical aspect to building an efficient P2P GPU kernel was to keep as much data

as possible on the device rather than multiple calls across the PCIe bus. This was

accomplished using vectors to both store actual cluster data and provide indirection

pointers to these clusters. These indirection and data clusters are briefly described

in the next subsection.

4.1 Kernel Indirection and Data Clusters

The set of indirection vectors that are passed to the GPU kernel consist of the global

cluster index, the associated neighbor index, starting point for neighbor, and the

starting point for local called cidx, uidx, ulist, and cpart_idx, respectively (see

Fig. 3). The global thread index is computed using CUDA and used to determine

the current local and associated neighboring clusters with computed offsets

cpart_idx and ulist, respectively. The indirections provide a means to map proper

algorithm behavior to the GPU, as the device will only see data within a given

thread block without regard to any real structure. The indirections properly isolate

threads to defined clusters of data. These indirections for local and neighbor clusters

are then applied to retrieve the actual coordinate data held with the particles

structure. The number of threads per block for the GPU kernel is defined based on

the total number of coordinate particles held by the particles structure.

7

Fig. 3 P2P data and indirection pointers

The P2P GPU kernel executes for each cluster, storing the computed potentials for

each in the global structure that was copied over the PCIe bus. The algorithm for

the P2P GPU kernel is shown in Fig. 4. Once the kernel completes, the CPU will

collect each potential from the global structure and copy it to each of the leaves in

the current tree structure.

The observed performance of the implemented P2P GPU kernel and its relation to

the predictive analysis are discussed in the next subsection.

8

Fig. 4 P2P GPU kernel algorithm

4.2 Observed Performance and Predictive Analysis

The P2P GPU kernel demonstrates dramatic performance improvements over the

CPU-only implementation. This GPU reveals a speed-up factor of over 500 times

greater than the single-threaded CPU processor version for close to 100,000

particles, as shown in Fig. 5. These results are congruent with the predicted analysis

regarding both the arithmetic intensity of the kernel itself and the hardware-derived

metrics. There are several reasons for this observed performance increase when

employing the GPU over the serial CPU.

Let N be total number of particles, P be collection of particles, CIDX be the

global cluster index, UIDX be the associated neighbors index, and IDXCPART _

be the starting point to particle index

Output: f

1. threadIDglobalgidx _ // from CUDA

2. IF Ngidx  THEN

3. SET 0F

4.  gidxPpi 

5.  gidxCIDXI 

6. FOR  IUIDXj  TO  1IUIDX

7.  jULISTJ 

8. FOR  JIDXCPARTi _2 TO  1_ JIDXCPART

9.  2iPpj 

10.  pjpiKwpjFF ,. 

11. END FOR

12. END FOR

13. FOR  IIDXCPARTj _ TO gidx

14.  jPpj 

15.  pjpiKwpjFF ,. 

16. END FOR

17. FOR 1 gidxj TO  1_ IIDXCPART

18.  jPpj 

19.  pjpiKwpjFF ,. 

20. END FOR

21.     Fgidxfgidxf 

22. END IF

9

Fig. 5 GPU-defined P2P kernel performance

The first reason is the most obvious: The CPU version is not optimal given that a

single process is being employed without leveraging any of the multithread

capabilities. The GPU executes thousands of cores that are employed for even the

simplest of functions, and this puts the CPU at a severe disadvantage from the

start.13 Another reason for the substantial performance benefit of the GPU for the

P2P kernel is that both the locality and basic operation is perfectly suited for the

data-throughput model of the device. The data managed by the kernel is executed

in unison with no coalescing or bank conflict issues.

5. Conclusions and Future Work

This work documented the implementation of the P2P kernel for bbAFMM using a

shared-memory single GPU paradigm with CUDA as the language vehicle and has

shown dramatic performance increases over the corresponding CPU

implementation. The P2P GPU kernel revealed a speed-up factor of more than 500

times for close to 100,000 particles. These observed results are congruent with

predictive results gleaned from both algorithmic analysis and hardware-derived

metrics that include GPU memory bandwidth, GPU peak performance, and PCIe

bandwidth.

In the future we would like to apply these algorithm analysis techniques with other

kernels defined using bbAFMM. Particular interest resides in the analysis and

implementation of the M2L kernel, as this comprises the majority of bbAFMM and

would present the largest payoff.

10

6. References

1. Ivanov L. The n-body problem throughout the computer science curriculum.

Journal of Computing Sciences in Colleges, Papers of the 12th Annual

Consortium for Computing Sciences (CCSC) Northeastern Conference.

2007;22(6):43–52.

2. Nyland L, Harris M, Prins J. Fast n-body simulation with CUDA. GPU Gems.

2007;3(1):677–696.

3. Greengard L, Rokhlin V. A fast adaptive multipole algorithm for particle

simulations. Journal for Computational Physics. 1997;135(2):280–292.

4. Board J, Schulten K. The fast multipole algorithm. Computing in Science and

Engineering. 2000;2(1):76–79.

5. Ying L, Biros G, Zorin D. A kernel-independent adaptive fast multipole

algorithm in two and three dimensions. Journal of Computational Physics.

2004;196(2):591–626.

6. Lashuk I, Chandramowlishwaran A, Langston H, Nguyen T-A, Sampath R,

Shringarpure A, Vuduc R, Ying L, Zorin D, Biros G. A massively parallel

adaptive fast-multipole method on heterogeneous architectures.

Communications of the ACM. 2009;55(5):101–109.

7. Takahashi T, Cecka C, Darve E. Optimization of the parallel black-box fast

multipole method on CUDA. InPar 2012. Proceedings of Innovative Parallel

Computing 2012; 2012 May 13–14; San Jose, CA; New York (NY): Institute

of Electrical and Electronics Engineers; c2012.

8. Cheng H, Greengard L, Rokhlin V. A fast adaptive multipole algorithm in

three dimensions. Journal of Computational Physics. 1999;155(2):468–498.

9. NVIDIA Corporation. CUDA compute architecture: Kepler GK110. San Jose

(CA): NVIDIA Corporation; 2012.

10. Ajanovic J. PCI Express* (PCIe*) 3.0 accelerator features. Santa Clara (CA):

Intel Corporation; 2008.

11. Inta R, Bowman DJ, Scott SM. The “chimera”: an off-the-shelf

CPU/GPGPU/FPGA hybrid computing platform. International Journal of

Reconfigurable Computing: Special Issue on High-Performance

Reconfigurable Computing. 2012;2012(2):10.

11

12. Daga M, Aji AM, Feng W-C. On the efficacy of a fused CPU+GPU processor

(or APU) for parallel computing. Presented at the 2011 Symposium on

Application Accelerators in High-Performance Computing Symposium; 2011

Jul 19–20; Knoxville, TN.

13. NVIDIA. CUDA toolkit documentation. [accessed 12 April 2015].

http://docs.nvidia.com/cuda/cuda-c-programming-guide.

14. Barnes J, Hut P. A hierarchical O(N log N) force-calculation algorithm.

Nature. 1986;324(6096):446–449.

15. Fong W, Darve, E. The black-box fast multipole method. Journal of

Computational Physics. 2009;228(23):8712–8725.

16. Callahan PB, Kosaraju, SR. A decomposition of multidimensional point sets

with applications to k-nearest-neighbors and n-body potential fields. Journal

of the ACM. 1995;42(1):67–90.

17. Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to algorithms.

2nd edition. Cambridge (MA): McGraw-Hill Book Company; 2001.

12

List of Symbols, Abbreviations, and Acronyms

AFMM Adaptive Fast Multipole Method

bbAFMM Black-Box Adaptive Fast Multipole Method

CPU central processing unit

CUDA Compute Unified Device Architecture

FMM Fast Multipole Method

FLOP floating-point operation

GFLOPs 1 billion floating-point operations

GPU graphics processor unit

HPC high-performance computing

L2L local-to-local

L2P local-to-particle

M2L multipole-to-local

M2M multipole-to-multipole

M2P multipole-to-particle

P2L particle-to-local

P2M particle-to-multipole

P2P particle-to-particle

PCIe peripheral component interconnect express

13

 1 DEFENSE TECHNICAL

 (PDF) INFORMATION CTR

 DTIC OCA

 2 DIRECTOR

 (PDF) US ARMY RESEARCH LAB

 RDRL CIO LL

 IMAL HRA MAIL & RECORDS

 MGMT

 1 GOVT PRINTG OFC

 (PDF) A MALHOTRA

 2 DIRECTOR

 (PDF) US ARMY RESEARCH LAB

 RDRL CIH S

 R HANEY

 D SHIRES

14

INTENTIONALLY LEFT BLANK.

